Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368
P. F. Rapheal, ${ }^{\text {a }}$ E. Manoj, ${ }^{\text {a }}$
M. R. Prathapachandra Kurup ${ }^{\text {a* }}$ and E. Suresh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, Kerala, India, and ${ }^{\text {b }}$ Analytical Science Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India

Correspondence e-mail: mrp@cusat.ac.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(Pyridin-2-yl)hydrazinecarbothioamide

The title compound, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$, crystallizes as the thione tautomer, with intramolecular $\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$ and $\mathrm{S} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds, and $\pi-\pi$ stacking along the b axis. Intermolecular $\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds link the molecules into one-dimensional sheets stacked along the c axis.

Comment

The biological activity of thiosemicarbazones is due to their ability to form chelates with biologically important metal ions, bonding through an S and two N atoms, $N N S$ (Klayman et al., 1984). The biological activities of thiosemicarbazones and their metal complexes include antitumour, fungicidal, bactericidal, anti-inflammatory and antiviral (Sreekanth \& Kurup, 2003). This prompted us to carry out the crystal structure determination of the title N 4 -substituted thiosemicarbazide, (I), a potential $N N S$-donor ligand. The presence of a pyridine ring and the absence of an azomethine bond are expected to be useful in the structure-activity correlation study of this type of compound.

(I)

The $\mathrm{C}-\mathrm{S}$ bond distance of 1.6897 (13) \AA in (I) is intermediate between the values of $1.82 \AA$ for a $\mathrm{C}-\mathrm{S}$ single bond and $1.56 \AA$ for a $\mathrm{C}=\mathrm{S}$ double bond (He et al., 2000). Similarly, the $\mathrm{C} 6-\mathrm{N} 2$ and $\mathrm{C} 6-\mathrm{N} 3$ bond distances (Table 1) indicate some double-bond character and the existence of extensive delocalization of the thiosemicarbazide moiety. This thiosemicarbazide moiety is planar, with a maximum deviation of 0.0127 (1) \AA for atom C6. The $\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 2$ torsion angle of $177.77(16)^{\circ}$ indicates that the hydrazine atom N 4 is positioned trans to the thioamide atom N 2 , while the $\mathrm{S} 1-$ $\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 4$ torsion angle of $-0.42(24)^{\circ}$ indicates that atom N 4 is $c i s$ to the thionyl atom S 1 about the $\mathrm{C} 6-\mathrm{N} 3$ bond. These are in agreement with values in thiosemicarbazones (Fun et al., 2005). This is due to the presence of the pyridine ring N atom, which forms an intramolecular hydrogen bond and facilitates the geometry. This observation was confirmed by the geometry of 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide (Jian et al., 2005), where the hydrazine N atom is cis to the thioamide N atom and trans to the thionyl S atom.

Received 16 May 2005
Accepted 15 June 2005
Online 24 June 2005

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of fixed radii. Dashed lines denote the intramolecular $\mathrm{N} \cdots \mathrm{H}-$ N and $\mathrm{S} \cdots \mathrm{H}-\mathrm{N}$ interactions.

Figure 2

A view of (I) along the a axis. Inter- and intramolecular hydrogen bonds are indicated by dashed lines. The molecules are stacked along the b direction. [Symmetry code: $\left({ }^{*}\right)-x+\frac{1}{2}, y+\frac{3}{2},-z+\frac{1}{2}$.]

The intramolecular hydrogen bonds in (I) (Fig. 1 and Table 2) facilitate almost planar geometry in the compound, with a maximum deviation of 0.1440 (1) \AA for hydrazine atom N 4 . The N3-H6‥N1 hydrogen bond forms a six-membered ring and the $\mathrm{N} 4-\mathrm{H} 7 \cdots \mathrm{~S} 1$ hydrogen bond forms a fivemembered ring. In the packing, molecules are stacked along the b axis and an intermolecular $\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{~N} 4^{*}$ hydrogen bond (Fig. 2) produces independent polymeric chains (Fig. 3). $\pi-\pi$ interactions between the planar pyridine rings may stabilize the packing.

Experimental

The title compound was prepared by refluxing a solution of 4-methyl-4-phenyl-3-thiosemicarbazide ($1 \mathrm{~g}, 5.52 \mathrm{mmol}$) and 2-aminopyridine

Figure 3
The packing of (I), viewed along the b axis, showing the independent polymeric sheets stacked as layers along the c axis.
$(0.520 \mathrm{~g}, 5.52 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{ml})$ for 45 min . The solution was chilled and the compound separated and washed well with acetonitrile. The product was recrystallized from ethanol. X-ray quality single crystals of (I) were obtained by slow evaporation of an ethanol solution over 7 d .

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=168.22$
Monoclinic, $C 2 / c$
$a=15.5846$ (17) Å
$b=10.1592$ (11) \AA
$c=11.1622(12) \AA$
$\beta=121.118(2)^{\circ}{ }^{\circ}$
$V=1513.0(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: none
4378 measured reflections
1748 independent reflections

$$
D_{x}=1.477 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4378
reflections

$$
\theta=2.7-28.2^{\circ}
$$

$\mu=0.36 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light yellow

$$
0.32 \times 0.28 \times 0.22 \mathrm{~mm}
$$

$$
R_{\mathrm{int}}=0.015
$$

$$
\theta_{\max }=28.2^{\circ}
$$

$$
h=-20 \rightarrow 16
$$

$$
k=-13 \rightarrow 12
$$

$$
l=-11 \rightarrow 14
$$

Refinement

Refinement on F^{2}
1604 reflections with $I>2 \sigma(I)$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.107$
$S=1.12$
1748 reflections
112 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0614 P)^{2}\right. \\
& \quad+0.5476 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C6	$1.6897(13)$	N2-C5	$1.3947(16)$
N4-N3	$1.4104(16)$	C6-N3	$1.3283(17)$
N2-C6	$1.3639(16)$		
N3-C6-N2	$117.96(11)$	N2-C6-S1	$118.85(10)$
N3-C6-S1	$123.16(10)$	C6-N3-N4	$122.79(12)$

organic papers

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H5 $\cdots \mathrm{N} 4^{\mathrm{i}}$	0.86	2.21	$3.058(2)$	169
N4-H7 1	$0.75(3)$	$2.72(3)$	$3.025(2)$	$107(2)$
N3-H6 N 1	$0.79(2)$	$2.06(2)$	$2.6698(16)$	$134(2)$

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{3}{2},-z+\frac{1}{2}$.

Atoms H6, H7 and H8 were located from difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software
used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

MRPK and EM thank the Kerala State Council for Science, Technology and Environment for financial assistance.

References

Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
He, C., Duan, C. Y., Fang, C. J., Liu, Y. J. \& Meng, Q. J.. (2000). J. Chem. Soc. Dalton Trans. pp. 1207-1212.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fun, H.-K., Chantrapromma, S., Suni, V., Sreekanth, A., Sivakumar, S. \& Kurup, M. R. P. (2005). Acta Cryst. E61, o1337-o1339.
Jian, F., Bai, Z., Xiao, H. \& Li, K. (2005). Acta Cryst. E61, o653-o654.
Klayman, D. L., Scovill, J. P., Bruce, J. \& Bartosevich, J. F. (1984). J. Med. Chem. 27, 84-87.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL. Version 6. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sreekanth, A. \& Kurup, M. R. P. (2003). Polyhedron, 22, 3321-3332.

