Received 16 May 2005 Accepted 15 June 2005

Online 24 June 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

P. F. Rapheal,^a E. Manoj,^a M. R. Prathapachandra Kurup^a* and E. Suresh^b

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, Kerala, India, and ^bAnalytical Science Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India

Correspondence e-mail: mrp@cusat.ac.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.035 wR factor = 0.107 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_6H_8N_4S$, crystallizes as the thione tautomer, with intramolecular $N \cdots H - N$ and $S \cdots H - N$ hydrogen bonds, and $\pi - \pi$ stacking along the *b* axis. Intermolecular $N \cdots H - N$ hydrogen bonds link the molecules into one-dimensional sheets stacked along the *c* axis.

N-(Pyridin-2-yl)hydrazinecarbothioamide

Comment

The biological activity of thiosemicarbazones is due to their ability to form chelates with biologically important metal ions, bonding through an S and two N atoms, *NNS* (Klayman *et al.*, 1984). The biological activities of thiosemicarbazones and their metal complexes include antitumour, fungicidal, bactericidal, anti-inflammatory and antiviral (Sreekanth & Kurup, 2003). This prompted us to carry out the crystal structure determination of the title N4-substituted thiosemicarbazide, (I), a potential *NNS*-donor ligand. The presence of a pyridine ring and the absence of an azomethine bond are expected to be useful in the structure–activity correlation study of this type of compound.

The C-S bond distance of 1.6897 (13) Å in (I) is intermediate between the values of 1.82 Å for a C-S single bond and 1.56 Å for a C=S double bond (He et al., 2000). Similarly, the C6-N2 and C6-N3 bond distances (Table 1) indicate some double-bond character and the existence of extensive delocalization of the thiosemicarbazide moiety. This thiosemicarbazide moiety is planar, with a maximum deviation of 0.0127 (1) Å for atom C6. The N4-N3-C6-N2 torsion angle of 177.77 $(16)^{\circ}$ indicates that the hydrazine atom N4 is positioned trans to the thioamide atom N2, while the S1-C6-N3-N4 torsion angle of -0.42 (24)° indicates that atom N4 is *cis* to the thionyl atom S1 about the C6–N3 bond. These are in agreement with values in thiosemicarbazones (Fun et al., 2005). This is due to the presence of the pyridine ring N atom, which forms an intramolecular hydrogen bond and facilitates the geometry. This observation was confirmed by the geometry of 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide (Jian et al., 2005), where the hydrazine N atom is cis to the thioamide N atom and trans to the thionyl S atom.

Printed in Great Britain – all rights reserved Acta Cryst. (2005). E61, o2243–o2245

© 2005 International Union of Crystallography

Figure 1

A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of fixed radii. Dashed lines denote the intramolecular N···H-N and S···H-N interactions.

Figure 2

A view of (I) along the *a* axis. Inter- and intramolecular hydrogen bonds are indicated by dashed lines. The molecules are stacked along the bdirection. [Symmetry code: (*) $-x + \frac{1}{2}, y + \frac{3}{2}, -z + \frac{1}{2}$.]

The intramolecular hydrogen bonds in (I) (Fig. 1 and Table 2) facilitate almost planar geometry in the compound, with a maximum deviation of 0.1440 (1) Å for hydrazine atom N4. The N3-H6 $\cdot\cdot\cdot$ N1 hydrogen bond forms a six-membered ring and the N4-H7...S1 hydrogen bond forms a fivemembered ring. In the packing, molecules are stacked along the *b* axis and an intermolecular N2-H5...N4* hydrogen bond (Fig. 2) produces independent polymeric chains (Fig. 3). π - π interactions between the planar pyridine rings may stabilize the packing.

Experimental

The title compound was prepared by refluxing a solution of 4-methyl-4-phenyl-3-thiosemicarbazide (1 g, 5.52 mmol) and 2-aminopyridine

Figure 3

The packing of (I), viewed along the *b* axis, showing the independent polymeric sheets stacked as layers along the c axis.

(0.520 g, 5.52 mmol) in acetonitrile (20 ml) for 45 min. The solution was chilled and the compound separated and washed well with acetonitrile. The product was recrystallized from ethanol. X-ray quality single crystals of (I) were obtained by slow evaporation of an ethanol solution over 7 d.

Crystal data

C₆H₈N₄S $D_r = 1.477 \text{ Mg m}^{-3}$ $M_{r} = 168.22$ Mo $K\alpha$ radiation Monoclinic, C2/c Cell parameters from 4378 a = 15.5846 (17) Åreflections b = 10.1592 (11) Å $\theta=2.7{-}28.2^\circ$ c = 11.1622 (12) Å $\mu = 0.36 \text{ mm}^{-1}$ T = 293 (2) K $\beta = 121.118 \ (2)^{\circ}$ V = 1513.0 (3) Å³ Block, light yellow Z = 8 $0.32 \times 0.28 \times 0.22$ mm

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: none 4378 measured reflections 1748 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ wR(F²) = 0.107 S = 1.121748 reflections 112 parameters H atoms treated by a mixture of

independent and constrained refinement

Table 1 Selected geometric parameters (Å, °).

S1-C6	1.6897 (13)	N2-C5	1.3947 (16)
N4-N3 N2-C6	1.4104 (16) 1.3639 (16)	C6-N3	1.3283 (17)
N3-C6-N2 N3-C6-S1	117.96 (11) 123.16 (10)	N2-C6-S1 C6-N3-N4	118.85 (10) 122.79 (12)

1604 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_{\rm o}{}^2) + (0.0614P)^2$

+ 0.5476P] where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.015$ $\theta_{\rm max} = 28.2^{\circ}$

 $h = -20 \rightarrow 16$

 $k = -13 \rightarrow 12$

 $l = -11 \rightarrow 14$

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H5\cdots N4^{i}$	0.86	2.21	3.058 (2)	169
$N4-H7\cdots S1$	0.75 (3)	2.72 (3)	3.025 (2)	107 (2)
$N3-H6\cdots N1$	0.79 (2)	2.06 (2)	2.6698 (16)	134 (2)

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{3}{2}, -z + \frac{1}{2}$.

Atoms H6, H7 and H8 were located from difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93 Å and N-H distances of 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2003); software

used to prepare material for publication: *WinGX* (Version 1.70.01; Farrugia, 1999).

MRPK and EM thank the Kerala State Council for Science, Technology and Environment for financial assistance.

References

- Bruker (1998). *SMART* (Version 5.0) and *SAINT* (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- He, C., Duan, C. Y., Fang, C. J., Liu, Y. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 1207–1212.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H.-K., Chantrapromma, S., Suni, V., Sreekanth, A., Sivakumar, S. & Kurup, M. R. P. (2005). Acta Cryst. E61, o1337–o1339.
- Jian, F., Bai, Z., Xiao, H. & Li, K. (2005). Acta Cryst. E61, 0653-0654.
- Klayman, D. L., Scovill, J. P., Bruce, J. & Bartosevich, J. F. (1984). J. Med. Chem. 27, 84–87.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). *SHELXTL*. Version 6. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sreekanth, A. & Kurup, M. R. P. (2003). Polyhedron, 22, 3321-3332.